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Abstract—Data quality of Phasor Measurement Unit (PMU) is 

receiving increasing attention as it has been identified as one of the 

limiting factors that affect many wide-area measurement system 

(WAMS) based applications. In general, existing PMU calibration 

methods include offline testing and model based approaches. 

However, in practice, the effectiveness of both is limited due to the 

very strong assumptions employed. This paper presents a novel 

framework for online bias error detection and calibration of PMU 

measurement using density-based spatial clustering of 

applications with noise (DBSCAN) based on much relaxed 

assumptions. With a new problem formulation, the proposed data 

mining based methodology is applicable across a wide spectrum of 

practical conditions and one side-product of it is more accurate 

transmission line parameters for EMS database and protective 

relay settings. Case studies demonstrate the effectiveness of the 

proposed approach. 

Index Terms—PMU, data quality, data calibration, data mining, 

DBSCAN, transmission line parameter. 

I. INTRODUCTION 

HASOR measurement unit (PMU) is envisioned to be one 

of the enabling technologies in smart grid, with the promise 

of massive installation in future power systems. On one hand, 

most synchrophasor-based applications, especially the mission 

critical ones, require the measurements to be very reliable and 

accurate. On the other, although PMU data are expected to be 

highly accurate, this potential accuracy and reliability are not 

always achieved in actual field installation due to various 

causes [1]. It has been observed under many occasions that 

PMU measurements can have various types of data quality 

issues. To ensure accurate, reliable and consistent PMU data, 

there are pressing needs to calibrate PMU to fulfill the claimed 

performance.  

As discussed in [2], the PMU device itself is typically very 

accurate, but the instrumental channel, where a PMU gets its 

inputs, is usually much less accurate. In particular, the 

instrumentation channel (e.g., potential and current 

transformers) can introduce magnitude and phase angle errors 

that are magnitudes of orders higher than the typical PMU 

accuracy. A practically useful calibration method should be 

capable of handling inaccuracies originated from both sources. 

Previously the Performance and Standards Task Team 

(PSTT) published a PMU system testing and calibration guide 

[3]. As discussed and widely accepted in the 2016 NASPI Work 

Group meeting, PMU data quality efforts need to be 

implemented to ensure the highest synchrophasor signal quality 

for applications. The modified IEEE C37.118 standard requires 

the total vector error (TVE) between a measured phasor and its 

true value to be well within 1% under steady-state operating 

conditions [4]. Towards these requirements, many PMU 

calibration schemes have been proposed. In general, these 

methods can be divided into two categories based on how they 

are implemented: offline testing/calibration [5]-[11] and model-

based approaches [12]-[16]. 

The former works by comparing PMU output against 

standard testing signal(s), using certain types of specialized 

equipment or systems whose accuracies are at least one level 

greater than the to-be-tested PMUs. This type of methods 

requires specialized equipment/system, and due to their offline 

nature, errors originated from the instrumentation channel 

cannot be duplicated and compensated. 

The latter works by fitting PMU measurements into a 

mathematical model for fidelity check, assuming parameters of 

the system/device(s) and the model are known a priori and 

accurate. In [12], the authors present a phasor-data-based state 

estimator (PSE) that is capable of identifying and correcting 

bias error(s) in phase angles. This approach assumes the phasor 

magnitudes and network parameters are both accurate. Paper 

[13] proposes the idea of a “super calibrator” for substation-

level data filtering and state estimation, the input of which 

includes PMU data, SCADA data, and a detailed 3-phase model 

of the substation, etc. Despite complexity of the model, the 

accuracy level of SCADA data adds uncertainty, or even 

degrades performance of the approach. Paper [1] proposes a 

calibration-factor-based iterative non-linear solution approach 

for 3-phase PMU data calibration. Performance of the approach 

is highly dependent upon accuracy of the 3-phase transmission 

line parameters in the EMS database. The PMU data calibration 

approach in [14] again assumes the TL impedances are known 

to be exact. Papers [15] and [16] attempt to accomplish line 

parameter estimation and PMU calibration simultaneously, 

with the assumption that one of the two PMUs generates perfect 

measurements, which, in practice, is really difficult to tell. The 

strong assumptions used in existing model-based methods 

undermine their practicability. 

This paper presents a novel data mining based synchrophasor 

measurement calibration framework which detects and corrects 
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the overall systematic or bias error(s) introduced by both PMU 

and its instrumentation channel. Major contribution of the 

proposed method lies in that it does not require accurate prior 

knowledge of the system mathematical model/parameters. 

Furthermore, one byproduct of the proposed method is more 

accurate impedance parameters of the transmission line for 

EMS database and protective relay settings. By relaxing those 

strong assumptions employed in existing model based 

approaches, the proposed method advances the practicability of 

online PMU calibration. 

The remainder of this paper is organized as follows. Section 

II describes the problem and related mathematical models. 

Section III presents the proposed framework. Case studies are 

presented in section IV while conclusion and future work are 

discussed in section V. 

II. PROBLEM DESCRIPTION AND FORMULATION 

A. Bias Error in PMU Measurements 

Generally speaking, errors in synchrophasor measurements 

can originate from three possible sources as discussed in [19]: 

transducers, synchronization, and phasor estimation algorithm. 

Impacts of these three sources can be summarized into two 

categories: random error and bias (systematic) error. 

Random error, as its name suggests, is random in either 

direction in its nature and difficult to predict. Random error can 

be circumvented from measurements via statistical means. 

Extensive studies have been conducted in reducing random 

error or its influences to PMU measurements, with satisfactory 

results observed: unbiased linear least squares (LS) is used in 

[21]; non-linear LS algorithms are used in [22]-[23]; total LS is 

introduced in [24]; other optimization procedures are discussed 

in [25] and [26]. 

Systematic or bias error is reproducible inaccuracy that is 

consistent in the same direction. Bias error is much harder to 

estimate and remove. Authors of [2] have examined the 

maximum bias errors introduced by different portions of the 

measurement chain. Table I summarizes the maximum bias 

error for a typical 230-kV system. For example, with a 400-ft 

instrumentation cable, the maximum bias errors in the 

magnitude and phase angle of the voltage phasor are 0.709% 

and 1.471 degree, respectively. These bias errors are no longer 

negligible and a systematic approach needs to be developed to 

identify and remove them, which is the scope of this paper. 

TABLE I 

 MAXIMUM BIAS ERRORS INTRODUCED BY DIFFERENT PORTIONS OF THE PMU 

MEASUREMENT CHAIN IN A 230-KV SYSTEM [2] 

Source 

of 

Error 

Voltage Phasor Current Phasor 

Magnitude 

(%) 

Phasor Angle 

(degree) 

Magnitude 

(%) 

Phasor Angle 

(degree) 

PT/CT 0.6 1.04 1.2 0.52 

Cabling 

100 ft 400 ft 100 ft 400 ft 100 ft 400 ft 100 ft  400 ft 

0.009 0.009 0.115 0.411 0.066 0.066 0.03 0.09 

PMU 0.1 0.02 0.1 0.02 

Total 0.709 0.709 1.175 1.471 1.366 1.366 0.57 0.63 

B. Notations and Models 

Fig. 1 shows a measured voltage phasor �̅�, its corresponding 

true phasor value �̅�𝑡𝑟𝑢𝑒 , and the associated bias errors in 

magnitude 𝜕𝑉 and phase angle 𝜕𝜃. The following relationship 

is derived: 

�̅� = 𝑉 ∙ 𝑒𝑗𝜃𝑉 (1) 

�̅�𝑡𝑟𝑢𝑒 = (𝑉 + 𝜕𝑉) ∙ 𝑒𝑗(𝜃𝑉+𝜕𝜃) (2) 

where V and 𝜃𝑉 are the magnitude and phase angle of phasor �̅�, 

respectively.  
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Fig. 1.  Bias error in PMU measurement 

A PI model as shown in Fig. 2 is considered in this work as 

the model for a general transmission line. It could either be a 

nominal PI model if the line is short or an equivalent PI if the 

line is longer [28]. In Fig. 2, 𝑉𝑠 and 𝐼𝑠 represent the positive 

sequence voltage and current phasors measured at sending end 

of the line while  𝑉𝑟  and 𝐼𝑟  are the corresponding phasors 

collected from receiving end. Variables 𝑍  and 𝑌 represent 

series impedance and shunt admittance of the PI model. 
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Fig. 2. Transmission line nominal/equivalent PI model 

The following equations are derived from nodal analysis: 

𝐼𝑠 − 𝑉𝑠 ∙
𝑌

2
+ 𝐼𝑟 − 𝑉𝑟 ∙

𝑌

2
= 0 (3) 

𝑉𝑠 − 𝑍 ∙ (𝐼𝑠 − 𝑉𝑠 ∙
𝑌

2
) − 𝑉𝑟 = 0 (4) 

and 

𝑍 = 𝑅 + 𝑗𝑋 (5) 

𝑌 = 𝐺 + 𝑗𝐵𝑐  (6) 

where G and 𝐵𝑐 are line shunt conductance and susceptance.  

Combing equations (3)-(4) to solve for Y and Z yields: 

𝑍 =
𝑉𝑠

2
− 𝑉𝑟

2

𝐼𝑠 ∙ 𝑉𝑟 − 𝐼𝑟 ∙ 𝑉𝑠

 (7) 
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𝑌 = 2 ∙
𝐼𝑠 + 𝐼𝑟

𝑉𝑠 + 𝑉𝑟

 (8) 

Substituting each phasor in (7)-(8) with its magnitude and 

phase angle according to (1) and setting phase angle of Ir, 𝜃𝐼𝑟 , 

as the reference, the following equations can be derived: 

𝑅 = 𝑟𝑒𝑎𝑙(
𝑉𝑠

2𝑒
𝑖2𝜃𝑉𝑠

′

− 𝑉𝑟
2𝑒

𝑖2𝜃𝑉𝑟

′

𝐼𝑠 ∙ 𝑉𝑟𝑒
𝑖(𝜃𝐼𝑠

′
+𝜃𝑉𝑟

′
)
− 𝐼𝑟 ∙ 𝑉𝑠𝑒

𝑖𝜃𝑉𝑠

′
) (9) 

𝑋 = 𝑖𝑚𝑎𝑔(
𝑉𝑠

2𝑒𝑖2𝜃𝑉𝑠
′

− 𝑉𝑟
2𝑒𝑖2𝜃𝑉𝑟

′

𝐼𝑠 ∙ 𝑉𝑟𝑒
𝑖(𝜃𝐼𝑠

′+𝜃𝑉𝑟
′ ) − 𝐼𝑟 ∙ 𝑉𝑠𝑒

𝑖𝜃𝑉𝑠
′

) (10) 

𝐵𝑐 = 𝑖𝑚𝑎𝑔(2 ∙
𝐼𝑠𝑒

𝑖𝜃𝐼𝑠
′

+ 𝐼𝑟

𝑉𝑠𝑒
𝑖𝜃𝑉𝑠

′
+ 𝑉𝑟𝑒

𝑖𝜃𝑉𝑟
′

) (11) 

where 𝜃𝑉𝑠
′ = 𝜃𝑉𝑠

− 𝜃𝐼𝑟
,  𝜃𝑉𝑟

′ = 𝜃𝑉𝑟
− 𝜃𝐼𝑟

, and  𝜃𝐼𝑠
′ = 𝜃𝐼𝑠

− 𝜃𝐼𝑟
. 

Shunt conductance of a transmission line, G, is usually very 

small and therefore neglected from the PI model. 

III. PROPOSED SOLUTION 

A. Least Square Estimator (LSE) 

To investigate the sensitivity of line parameters to bias errors 

in PMU measurements, partial derivatives need to be taken for 

(9)-(11), all of which are complex equations. For the derivatives 

to be valid, they must obey the Cauchy-Riemann equations [27]. 

The compliance checking/procedure is not discussed here due 

to space consideration, but the validation has been completed. 

The following equations have been derived: 

∂𝑅 = 𝐴𝑅 ∙ ∂𝑉𝑠 + 𝐵𝑅 ∙ ∂𝑉𝑟 + 𝐶𝑅 ∙ 𝜕𝐼𝑠 + 𝐷𝑅 ∙ 𝜕𝐼𝑟 + 𝐸𝑅

∙ ∂𝜃𝑉𝑠

′ + 𝐹𝑅 ∙ ∂𝜃𝑉𝑟

′ + 𝐺𝑅 ∙ ∂𝜃𝐼𝑠
′

 
(12) 

∂𝑋 = 𝐴𝑋 ∙ ∂𝑉𝑠 + 𝐵𝑋 ∙ ∂𝑉𝑟 + 𝐶𝑋 ∙ 𝜕𝐼𝑠 + 𝐷𝑋 ∙ 𝜕𝐼𝑟 + 𝐸𝑋

∙ ∂𝜃𝑉𝑠

′ + 𝐹𝑋 ∙ ∂𝜃𝑉𝑟

′ + 𝐺𝑋 ∙ ∂𝜃𝐼𝑠
′

 
(13) 

∂𝐵𝑐 = 𝐴𝐵 ∙ ∂𝑉𝑠 + 𝐵𝐵 ∙ ∂𝑉𝑟 + 𝐶𝐵 ∙ 𝜕𝐼𝑠 + 𝐷𝐵 ∙ 𝜕𝐼𝑟 + 𝐸𝐵

∙ ∂𝜃𝑉𝑠

′ + 𝐹𝑋 ∙ ∂𝜃𝑉𝑟

′ + 𝐺𝑋 ∙ ∂𝜃𝐼𝑠
′

 
(14) 

where coefficients Ax~Gx are all partial derivatives. Taking R as 

an example, these coefficients are: 𝐴𝑅 =
𝜕𝑅

𝜕𝑉𝑠
, 𝐵𝑅 =

𝜕𝑅

𝜕𝑉𝑟
, 𝐶𝑅 =

𝜕𝑅

𝜕𝐼𝑠
,  𝐷𝑅 =

𝜕𝑅

𝜕𝐼𝑟
, 𝐸𝑅 =

𝜕𝑅

∂𝜃𝑉𝑠
′ , 𝐹𝑅 =

𝜕𝑅

∂𝜃𝑉𝑟
′ , and 𝐺𝑅 =

𝜕𝑅

∂𝜃𝐼𝑠
′ . For space 

consideration, detailed information of these partial derivatives 

is discussed in Appendix I. Put equations (12)-(14) into matrix 

form to obtain: 

[
∂𝑅
∂𝑋
∂𝐵𝑐

] = [

𝐴𝑅 𝐵𝑅    𝐶𝑅 𝐷𝑅    𝐸𝑅 𝐹𝑅 𝐺𝑅

𝐴𝑋 𝐵𝑋    𝐶𝑋 𝐷𝑋    𝐸𝑋 𝐹𝑋 𝐺𝑋

𝐴𝐵 𝐵𝐵    𝐶𝐵 𝐷𝐵    𝐸𝐵 𝐹𝐵 𝐺𝐵

] ∙

[
 
 
 
 
 
 
 
∂𝑉𝑠
∂𝑉𝑟
𝜕𝐼𝑠
𝜕𝐼𝑟
∂𝜃𝑉𝑠

′

∂𝜃𝑉𝑟

′

∂𝜃𝐼𝑠
′
]
 
 
 
 
 
 
 

 (15) 

It should be noted that coefficients Ax~Gx vary with the 

loading (current), as can be seen from the expression of, for 

example, 𝐶𝑅 + 𝑖𝐶𝑋 =
𝜕𝑍

∂𝐼𝑠
=

𝑉𝑟𝑒
𝑖(𝜃𝑉𝑟

′ +𝜃𝐼𝑠
′ )

∙(𝑉𝑟
2𝑒

𝑖2𝜃𝑉𝑟
′

−𝑉𝑠
2𝑒

𝑖2𝜃𝑉𝑠
′

)

(𝐼𝑟𝑉𝑠𝑒
𝑖𝜃𝑉𝑠

′
−𝐼𝑠𝑉𝑟𝑒

𝑖(𝜃𝑉𝑟
′ +𝜃𝐼𝑠

′ )
)

2 . 

Assuming N sets of PMU measurements under different load 

conditions are collected, the following matrix can be written: 

𝐻 =

[
 
 
 
 
 
 
 
 
 

𝐴𝑅1 𝐵𝑅1    𝐶𝑅1 𝐷𝑅1    𝐸𝑅1 𝐹𝑅1 𝐺𝑅1

𝐴𝑋1 𝐵𝑋1    𝐶𝑋1 𝐷𝑋1    𝐸𝑋1 𝐹𝑋1 𝐺𝑋1

𝐴𝐵1 𝐵𝐵1    𝐶𝐵1 𝐷𝐵1    𝐸𝐵1 𝐹𝐵1 𝐺𝐵1

𝐴𝑅2 𝐵𝑅2    𝐶𝑅2 𝐷𝑅2    𝐸𝑅2 𝐹𝑅2 𝐺𝑅2

𝐴𝑋2 𝐵𝑋2    𝐶𝑋2 𝐷𝑋2    𝐸𝑋2 𝐹𝑋2 𝐺𝑋2

𝐴𝐵2 𝐵𝐵2    𝐶𝐵2 𝐷𝐵2    𝐸𝐵2 𝐹𝐵2 𝐺𝐵2

⋮          ⋮          ⋮          ⋮          ⋮          ⋮          ⋮
𝐴𝑅𝑁 𝐵𝑅𝑁     𝐶𝑅𝑁 𝐷𝑅𝑁     𝐸𝑅𝑁 𝐹𝑅𝑁 𝐺𝑅𝑁

𝐴𝑋𝑁 𝐵𝑋𝑁    𝐶𝑋𝑁 𝐷𝑋𝑁    𝐸𝑋𝑁 𝐹𝑋𝑁 𝐺𝑋𝑁

𝐴𝐵𝑁 𝐵𝐵𝑁    𝐶𝐵𝑁 𝐷𝐵𝑁    𝐸𝐵𝑁 𝐹𝐵𝑁 𝐺𝐵𝑁]
 
 
 
 
 
 
 
 
 

 (16) 

𝐹 =

[
 
 
 
 
 
 
 
∂𝑉𝑠
∂𝑉𝑟
𝜕𝐼𝑠
𝜕𝐼𝑟
∂𝜃𝑉𝑠

′

∂𝜃𝑉𝑟
′

∂𝜃𝐼𝑠
′
]
 
 
 
 
 
 
 

，  𝐸 =

[
 
 
 
 
 
 
 
 
 
∂𝑅1

∂𝑋1

∂𝐵𝑐1

∂𝑅2

∂𝑋2

∂𝐵𝑐2

⋮
∂𝑅𝑛

∂𝑋𝑛

∂𝐵𝑐𝑛]
 
 
 
 
 
 
 
 
 

 (17)-(18) 

If an accurate set of line impedance parameters is known a 

priori, the bias error in the PMU measurements can be easily 

estimated using the standard least square estimator, as: 

𝐹 = (𝐻𝑇𝐻)−1𝐻𝑇𝐸 (19) 

Seven unknowns appear in F and therefore the rank of H 

matrix has to be no less than seven which requires 3×𝑁 ≥
7 or 𝑁 ≥ 3, (𝑁 ∈ 𝑁∗). Vector E is comprised of the difference 

between the true line impedance values and the calculated ones 

using (9)-(11). With the assumption that accurate line 

impedances are known, here are the steps for evaluating the bias 

errors in PMU measurements: 

-Step 1: calculate line impedance parameters R, X, and B 

according to (9)-(11); 

-Step 2: evaluate vector E by comparing the calculated line 

impedances (from step1) to their corresponding references 

obtained from the EMS database: REMS, XEMS, and BEMS; 

-Step 3: evaluate matrix H with the partial derivatives 

calculated from PMU measurements: 𝑉𝑠,  𝑉𝑟, 𝐼𝑠, and 𝐼𝑟; 

-Step 4: solve for vector 𝐹 based on (19). 

The aforementioned least square estimator is able to identify 

bias errors in PMU measurements assuming the line’s actual 

impedances, as the references, are known a priori. In practice, 

these parameters are read off from EMS database and were 

originally calculated based on tower geometries, conductor 

dimensions, estimates of line length, and conductor sags, etc. 

They only approximate the effects of conductor sags and ignore 

the dependence of impedance parameters on temperature and 

loading conditions [17]-[18]. Therefore, the challenge is that 

only approximates of line impedances are known and without 



DOI: 10.1109/TPWRD.2017.2688356 Published in: IEEE Transactions on Power Delivery 

 

 

4 

knowing their true values the calculated bias errors might be far 

from being accurate. In the following section, this paper shows 

how this challenge can be addressed by using data mining 

technology like Density-based Spatial Clustering.  

B. Sensitivity Analysis 

This subsection conducts sensitivity analysis and investigates 

influence of errors in referenced line impedances on bias error 

estimation in PMU measurements. A simulated transmission 

line with specifications shown in Appendix II is used for this 

study. Errors are added to all three line impedance references, 

one at a time, and the least square estimator described in section 

II. C is employed to evaluate F. As an example, results of the 

sensitivity analysis for line reactance X are shown in Fig. 3-Fig. 

4. 

 

Fig. 3. Sensitivity analysis-estimated bias error in phase angle vs. line reactance 

 
Fig. 4. Sensitivity analysis-estimated bias error in magnitude vs. line reactance 

From Fig. 3-Fig. 4, it can be observed that the influence of 

error in XEMS on bias error estimation is linear. A 10% error in 

𝑋𝐸𝑀𝑆  will result in: 0.16 rad error in ∂𝜃𝑉𝑠
′ and ∂𝜃𝑉𝑟

′; 0.01 rad 

error in ∂𝜃𝐼𝑠
′; 0.66 pu error in 𝜕𝐼𝑟; 0.28 pu error in 𝜕𝐼𝑠; 0.20 pu 

error in both ∂𝑉𝑠  and ∂𝑉𝑟 . Bias error estimation in 𝜃𝐼𝑠
′  is not 

really affected by error in XEMS while its corresponding 

magnitude is affected the most among all bias errors. Results of 

the sensitivity analysis are summarized in Table II. 

A few observations can be made based on Table II, 1) PMU 

measurement bias error(s) estimation is generally sensitive to 

error(s) in line impedance references; 2) impact of reference 

errors to bias error estimation is linear; 3) if line impedance 

references are exactly known a priori, all bias error can be 

accurately estimated. 
TABLE II  

RESULTS FOR SENSITIVITY ANALYSIS 

 
Error 

(%) 

𝛛𝑽𝒔 𝛛𝑽𝒓 𝝏𝑰𝒔 𝝏𝑰𝒓 𝛛𝜽𝑽𝒔

′  𝛛𝜽𝑽𝒓

′  𝛛𝜽𝑰𝒔
′  

p.u. rad 

𝝏𝑹 

-10 0.051 0.051 0.072 0.152 0.005 0.005 0.001 

-5 0.025 0.025 0.036 0.075 0.003 0.003 0.000 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

𝝏𝑿 

-10 0.200 0.200 0.283 0.658 0.163 0.162 0.010 

-5 0.101 0.101 0.142 0.329 0.082 0.081 0.005 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

𝝏𝑩𝒄 

-10 0.061 0.061 0.162 0.360 0.090 0.080 0.010 

-5 0.030 0.030 0.081 0.181 0.045 0.040 0.005 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

However, in practice, line impedance references cannot be 

known exactly, as discussed in II. D. To address this challenge, 

a data mining approach based on DBSCAN is proposed to 

address the uncertainties in TL impedance references. 

C.  DBSCAN Basics 

Density-based spatial clustering of applications with noise 

(DBSCAN) is an unsupervised data mining technique which is 

able to classify data points of any dimension into core points, 

reachable points and outliers [20]. A core point p contains at 

least minPts points (including p) within the designated 

searching distance ε. A reachable point q exists if there exists a 

path p1, p2,..., q, so that all points on the path, except q, are core 

points. Points that are not reachable from any other point are 

outliers. Core points and reachable points can form a cluster 

while outliers are excluded from such cluster. Fig. 5 shows an 

example for DBSCAN with minPts=4. Note that setting minPts 

to 3 will generate the same clustering result. 

p1
p2

p3

p4
p5 q

ε

 

Fig. 5.  Schematic diagram of DBSCAN with minPts=4 

As shown in Fig. 5, core points are in red, each of which has 

at least 4 points with distance less than ε. The yellow ones 

(reachable points) are reachable from the red ones but do not 

have the required minimum number of points nearby within the 

distance of ε. The blue one is not reachable from any other point 

and therefore is an outlier. The red and yellow points form a 

cluster with the blue one excluded. 

D. PMU Calibration Using DBSCAN  

Although EMS references can be significantly wrong, our 

experience shows that the error bands are generally well within 

20%. Therefore, we may define 𝛼 as the error band multiplier 

for impedance references obtained from the EMS database 
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(REMS, XEMS, and BEMS). The following constraints can be 

considered: 

{

(1 − 𝛼)𝑅𝐸𝑀𝑆 ≤ 𝑅 ≤ (1 + 𝛼)𝑅𝐸𝑀𝑆

(1 − 𝛼)𝑋𝐸𝑀𝑆 ≤ 𝑋 ≤ (1 + 𝛼)𝑋𝐸𝑀𝑆

(1 − 𝛼)𝐵𝐸𝑀𝑆 ≤ 𝐵𝑐 ≤ (1 + 𝛼)𝐵𝐸𝑀𝑆

 (20) 

The corresponding feasibility region can be visualized as the 

cube shown in Fig. 6. 

 

Fig. 6.   Feasible region for transmission line (TL) impedances 

The basic idea of the proposed approach is to 1) scan every 

point within feasible region (a total of M points); 2) evaluate the 

corresponding bias errors in the PMU measurements; 3) form 

sets of points with each set containing seven 4-dimentional data 

points, and each data point has the form of (∂𝑅, ∂𝑋, ∂𝐵𝑐, 𝑥), 

where x is one of the bias errors in PMU measurements (a total 

of M sets). 4) apply DBSCAN to cluster all the M data sets to 

find out the one with least number of outliers (maximum 

number of core and reachable points) and minimum searching 

distance. Once this cluster is identified, the actual bias errors in 

all PMU channels and errors in line impedance references can 

be determined accordingly. 

To minimize the computation, equation (19) is extended to 

(21). As compared to vector E and F in (19), matrix E’(3N-by-

M) and F’(7-by-M) are the extended version which relates 

multiple bias error sets to multiple sets of the error in referenced 

impedances. Fig. 7 shows a simple illustrative example of the 

DBSCAN algorithm for bias error identification. 

[
 
 
 
 
 
 
 

𝜕𝑉𝑠
1

𝜕𝑉𝑟
1

𝜕𝐼𝑠
1

𝜕𝐼𝑟
1

𝜕𝜃𝑉𝑠
′1

𝜕𝜃𝑉𝑟
′1

𝜕𝜃𝐼𝑠
′1

  

𝜕𝑉𝑠
2

𝜕𝑉𝑟
2

𝜕𝐼𝑠
2

𝜕𝐼𝑟
2

𝜕𝜃𝑉𝑠
′2

𝜕𝜃𝑉𝑟
′2

𝜕𝜃𝐼𝑠
′2

 

⋯
⋯
⋯

𝜕𝑉𝑠
𝑀

𝜕𝑉𝑟
𝑀

𝜕𝐼𝑠
𝑀

𝜕𝐼𝑟
𝑀

𝜕𝜃𝑉𝑠
′𝑀

𝜕𝜃𝑉𝑟
′𝑀

𝜕𝜃𝐼𝑠
′𝑀 ]

 
 
 
 
 
 
 

= (𝐻𝑇𝐻)−1𝐻𝑇

[
 
 
 
 
 
 
 
 
 
 
 
 𝜕𝑅1

1

𝜕𝑋1
1

𝜕𝐵𝑐1
1

𝜕𝑅2
1

𝜕𝑋2
1

𝜕𝐵𝑐2
1

：
：
：

𝜕𝑅𝑁
1

𝜕𝑋𝑁
1

𝜕𝐵𝑐𝑁
1

    𝜕𝑅1
2

    𝜕𝑋1
2

    𝜕𝐵𝑐1
2

    

𝜕𝑅2
2

𝜕𝑋2
2

𝜕𝐵𝑐2
2

    ：
    ：
    ：

     

𝜕𝑅𝑁
2

𝜕𝑋𝑁
2

𝜕𝐵𝑐𝑁
2

 

   

⋯
⋯
⋯

    𝜕𝑅1
𝑀

    𝜕𝑋1
𝑀

    𝜕𝐵𝑐1
𝑀

    

𝜕𝑅2
𝑀

𝜕𝑋2
𝑀

𝜕𝐵𝑐2
𝑀

    ：
    ：
    ：

     

𝜕𝑅𝑁
𝑀

𝜕𝑋𝑁
𝑀

𝜕𝐵𝑐𝑁
𝑀

 

     ]
 
 
 
 
 
 
 
 
 
 
 
 

 

  Or  

(21) 

𝐹′ = (𝐻𝑇𝐻)−1𝐻𝑇𝐸′ 

Fig. 7 shows an exemplary DBSCAN result for one data set 

(one column in F’). Point zero is pre-defined as one of the core 

point and the cluster search always starts from zero. The 

minimum number requirement minPts is set to be 3. In this 

particular example, the clustering results indicates that a total 

of 6 points are either core or reachable points while two points 

are identified to be outliers (the ones with 𝜕𝐼𝑠 and 𝜕𝜃𝐼𝑠
′). 

 

 

Fig. 7.  An example of bias error identification using DBSCAN 

The pseudo-code for the proposed DBSCAN based PMU 

calibration is presented below. 
  

algorithm DBSCAN_based_PMU_calibration is 

 input: PMU phasor measurements, 

                Nodes (R, X, Bc) in the cube. 

 output: PMU bias errors 

  matrix(H) ←PMU measurements 

  matrix(E’) ←Matrix(Nodes(R, X, Bc) - EMS(R, X, Bc)) 

//(LSE: Least Square Estimator) 

  matrix(F’) ←LSE(H, E’)  

vector(CCP)← //CCP: count cluster point 

minPts← 3 

 for each column in matrix(F’) do  

 // i← row index for matrix (F’), (1≤i≤ 7) 

 // j← column index for matrix (F’) 

  residual(i, j)← |𝐹′(𝑖, 𝑗)| (1≤i≤ 7) 

  if residual(i,j) is within the boundary 𝛼 

   𝐶(𝑖, 𝑗) ← 𝐹′(𝑖, 𝑗) 

   CCP(j)++ 

 Endforeach 

 for each column in matrix(C) do 

  // i← row index for matrix (F’), (1≤i≤ 7) 

// j← column index for matrix (C) 

  distance(i, i  ±1 ) ← |𝐶(𝑖, 𝑗) − 𝐶(𝑖 ± 1, 𝑗)| . //find the 

distance from each cluster point to its neighbor cluster point 

  eps(j)= (maximum(|distance|),𝑚𝑖𝑛𝑃𝑡𝑠) // eps(j) is the 

cluster searching distance for jth column 

Endforeach 

k← column in F’ with maximum CPP and minimum eps 

 output  
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A flowchart of the proposed data mining based PMU data 

calibration approach is shown in Fig. 8. 

 

Fig. 8.  Flow chart of proposed PMU data calibration approach 

As shown in the sensitivity analysis of section III, impacts of 

EMS reference errors to the calculation of bias error in each 

PMU measurement are given. In the ideal case when there is no 

error in the EMS reference and no bias error in the PMU 

measurements, by using DBSCAN, all the seven curves in the 

4-dimensional space (∂𝑅, ∂𝑋, ∂𝐵𝑐, 𝑥), where x is one of the bias 

errors in PMU measurements, intersect at a single point (0, 0, 0, 

0). When there are errors either in the EMS references or in the 

PMU measurements, according to the proposed approach, 

coordinates of this intersection corresponds to the error(s) in the 

EMS reference, while the outlier(s) identified correspondingly 

are the bias errors in PMU measurements.  

The aforementioned discussion is for the situation without 

noise. When noise exists in PMU measurements, the seven 

curves typically will not intercept exactly at a single point but 

instead will stay very close to each other around one particular 

zone/region, which may be referred to as the “zero region”. By 

looking at the searching distance and number of outliers, the 

“zero region” can be identified and therefore the errors in EMS 

references and PMU measurements can be evaluated 

accordingly. 

IV. EXPERIMENTAL VALIDATION 

Four case studies are presented in this section to demonstrate 

the procedure and effectiveness of the proposed PMU data 

calibration framework. A testing system with parameters shown 

in Table VIII has been set up in Matlab/Simulink for these 

experiments. 

A. Case I: The ideal case-no error in impedance references 

Objective of the first case study is to validate performance of 

the proposed method when no error exists in the TL impedance 

references. Basically, different sets of combinations of bias 

errors have been added to the PMU measurements and the 

proposed approach is used to identify them. The results for six 

representative cases are summarized in Table III, in which both 

the true bias errors and the calculated ones are presented and 

compared. The agreement between true bias errors and 

calculated ones validates the proposed approach under the ideal 

condition with no error in the referenced impedances. 

TABLE III 
BIAS ERROR IDENTIFICATION UNDER THE IDEAL CONDITION 

 True Calculated True Calculated True Calculated 

p.u. or rad (×10-3) 

𝝏𝑽𝒔 0 0.0334 10 9.9634 10 10.0395 

𝝏𝑽𝒓 0 0.0335 10 9.9613 10 10.0402 

𝝏𝑰𝒔 10 10.0591 0 -0.2240 10 10.0177 

𝝏𝑰𝒓 0 0.1480 0 -0.5332 0 -0.2318 

𝝏𝜽′𝑽𝒔 0 0.0067 1.75 1.7836 0 0.0185 

𝝏𝜽′𝑽𝒓 1.75 1.7601 0 0.0603 1.7

5 

1.7536 

𝝏𝜽′𝑰𝒔 0 -0.0001 0 -0.0070 0 -0.0070 

𝝏𝑽𝒔 10 10.0161 10 10.0891 10 10.0033 

𝝏𝑽𝒓 10 10.0154 10 10.0894 10 10.0034 

𝝏𝑰𝒔 10 9.9647 10 10.0591 10 9.9328 

𝝏𝑰𝒓 0 -0.3783 10 9.9659 10 9.6749 

𝝏𝜽′𝑽𝒔 0 0.0579 0 0.0138 1.7

5 

1.7731 

𝝏𝜽′𝑽𝒓 1.75 1.7937 1.75 1.7522 1.7

5 

1.7757 

𝝏𝜽′𝑰𝒔 1.75 1.7663 1.75 1.7698 1.7

5 

1.7676 

 

B. Case II: One referenced impedance has error  

The second case study considers error in one of the 

referenced impedances. Towards this goal, errors are added to 

each of the referenced impedances, one at a time, and different 

combinations of bias errors are considered for PMU 

measurements. For space consideration, only the result for a 

representative case is presented below. And in this particular 

case, a -2% error is considered for the series resistance, REMS, 

and 0.01 p.u. bias error is added to magnitude of the sending-

end current phasor. A 20% error band is considered for the 

referenced impedances with 𝛼 being set to 20%. The proposed 

approach scans all 4-dimensional data points collected from 

matrix F’, and for visualization purpose, only the relationship 

between bias errors and errors in R is plotted as shown in Fig. 

9. The dashed line marks the outcome of DBSCAN and the X-

axis gives the corresponding error in REMS. To help illustrate the 
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DBSCAN process, Fig. 10 visualizes the corresponding 

DBSCAN clustering results, in terms of size of the cluster and 

searching distance. Final results are summarized in Table IV. 
  

 

Fig. 9.  Relationships between identified bias errors and error in REMS 

 

Fig. 10.  Results of DBSCAN for case II 

TABLE IV 
 TEST RESULTS FOR CASE II 

 

True Calculated Calculated Error in 

p.u. or rad (×10-3) 
R 

(%) 

X 

(%) 

BC 

(%) 

𝝏𝑽𝒔 0 0.0230 

-2.02 0.01 -0.01 

𝝏𝑽𝒓 0 0.0345 

𝝏𝑰𝒔 10 10.0328 

𝝏𝑰𝒓 0 -0.0175 

𝝏𝜽′𝑽𝒔 0 0.0224 

𝝏𝜽′𝑽𝒓 0 0.0130 

𝝏𝜽′𝑰𝒔 0 -0.0149 

 

According to Table IV, the proposed approach successfully 

identifies not only bias error in PMU measurements but also 

error in the referenced TL series resistance. 

C. Case III: Two referenced impedances have errors 

In the third case study, -4% error and -6% error are 

considered for REMS and XEMS, respectively; bias errors of 0.01 

p.u. and 0.00175 rad are added to Vs and θVr, respectively. A 20% 

error band is considered for the referenced impedances with 𝛼 

being set to 20%.  

To help illustrate the DBSCAN process, Fig. 11 visualizes 

the clustering results, in terms of size of the cluster and 

searching distance. Both errors in the referenced impedances 

and the bias errors in PMU measurements are successfully 

identified. Final results are summarized in Table V. 

 

Fig. 11. DBSCAN clustering results for case III 

TABLE V 

 TEST RESULTS FOR CASE III 

 

True Calculated Calculated Error in 

p.u. or rad (×10-3) 
R 

(%) 

X 

(%) 

BC 

(%) 

𝝏𝑽𝒔 10 10.0612 

−4.2 −5.8 0.02 

𝝏𝑽𝒓 0 0.0334 

𝝏𝑰𝒔 0 0.0316 

𝝏𝑰𝒓 0 0.1591 

𝝏𝜽′𝑽𝒔 0 0.0036 

𝝏𝜽′𝑽𝒓 1.75 1.7617 

𝝏𝜽′𝑰𝒔 0 0.0047 

 

D. Case IV: All referenced impedance values have errors 

In the fourth case study, a set of -2%, -5%, 2% errors are 

considered for REMS, XEMS, and BEMS, respectively; bias errors of 

0.01 p.u. and 0.00175 rad are added to Vs and θVr, respectively. 

A 20% error band is considered for the referenced impedances 

with 𝛼 being set to 20%. Experimental results shown in Table 

VI demonstrate again the effectiveness of the proposed method 

when all referenced impedance values have errors. One key 

value of the proposed approach lies in its capability of PMU 

calibration without knowing an accurate system model. 

TABLE VI 

 TEST RESULTS FOR CASE IV 

 

True Calculated Calculated Error in 

p.u. or rad (×10-3) 
R 

(%) 

X 

(%) 

BC 

(%) 

𝝏𝑽𝒔 10 10.0143 
−2.1 -5.2 2.2 

𝝏𝑽𝒓 0 0.0054 
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𝝏𝑰𝒔 0 -0.0375 

𝝏𝑰𝒓 0 -0.0846 

𝝏𝜽′𝑽𝒔 1.75 1.7967 

𝝏𝜽′𝑽𝒓 0 -0.0437 

𝝏𝜽′𝑰𝒔 0 -0.0091 

E. Case V: Experiment using real PMU data 

In the fifth case study, PMU data are collected for a 500-kV 

transmission line in Jiangsu Electricity Power Grid with the 

name of “Huadong-Tianhui Line #5621”. PMU data reporting 

rate is 25 samples per second. 

Using these real PMU data, the proposed approach is applied 

to identify both errors from EMS database and bias errors in the 

measured phasors. As discussed above, cluster size and 

searching distance, ε, are used as the criteria for DBSCAN. Part 

of the spatial clustering results are visualized in fig. 12, which 

shows the relationship between errors in the reference values of 

R, X, and Bc, and the cluster size. As shown in fig. 12, the top 

three points with the largest cluster size are A1~A3, of which 

A2 has the smallest searching distance. The final results are 

summarized in Table VII. The results show, 

1) TL impedance parameters, R, X and Bc in the EMS 

database have errors of -14%, 5.4% and 12.6% respectively;  

2) no significant bias error in the voltage phasors collected 

from the real PMU is identified;  

3) bias errors of 0.0171 pu and 0.0164 pu are identified in the 

magnitudes of sending-end and receiving-end current phasors, 

respectively;  

4) no significant bias error is identified in the phase angles of 

the two current phasors. 

 

 

TABLE VII 

TEST RESULTS FOR CASE V 

 

Calculated Calculated Error in 

p.u. or rad (×10-3) 
R 

(%) 

X 

(%) 

BC 

(%) 

𝝏𝑽𝒔 -0.0032 

-14.0 6.4 12.6 

𝝏𝑽𝒓 -0.0033 

𝝏𝑰𝒔 0.0171 

𝝏𝑰𝒓 0.0164 

𝝏𝜽′𝑽𝒔 0.0003 

𝝏𝜽′𝑽𝒓 0.0027 

𝝏𝜽′𝑰𝒔 -5.6238e-5 

 

Computation time of the proposed approach is dependent 

upon the number of data points to scan within the feasibility 

region. In one experiment, a total of 1 million points (worst case 

scenario) are processed using a Matlab program, and the 

solution process takes roughly 29 seconds (recoding the 

program using C++ will greatly speed up the solution process). 

Fortunately, PMU data calibration does not need to be 

conducted very often, and once a week or longer will work for 

most cases. Structure of the proposed algorithm is suitable for 

parallel processing, which will further speed up the solution 

process. 

V. CONCLUSION 

This paper presents a novel approach for online calibration 

of PMU by using density-based spatial clustering. As compared 

to existing methods, the proposed one has two major merits: 1) 

it identifies the overall bias errors introduced by both PMU and 

its instrumentation channel; 2) it does not require accurate 

system model/parameters. Therefore, it is applicable across a 

wide spectrum of practical conditions. In addition, one by-

0.00014





A1:

A2:

A3: 0.00042

0.00060

 
 

Fig. 12. Experiment result with real PMU data (errors in R, X, and Bc vs. cluster size) 
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product of the proposed approach is more accurate TL 

impedance estimates for improved system modeling, more 

accurate protective relay settings, and other related applications. 

Future work includes: 1) extending the proposed framework to 

system level to achieve simultaneous calibration of multiple 

PMUs; 2) decomposing the spatial clustering process so that 

state-of-the-art parallel computing techniques can be employed 

to speed up the computation. 

APPENDIX I 

Partial derivatives of impedance to the PMU measurements 

are presented as follows: 

𝜕𝑍

∂𝑉𝑠

= −
2𝑉𝑠𝑒

2𝑖𝜃′𝑉𝑠

𝐼𝑟𝑉𝑠𝑒
𝑖𝜃′𝑉𝑠 − 𝐼𝑠𝑉𝑟𝑒

𝑖(𝜃′𝑉𝑟+𝜃′𝐼𝑠)

−
𝐼𝑟𝑒

𝑖𝜃′𝑉𝑠(𝑉𝑟
2𝑒2𝑖𝜃′𝑉𝑟 − 𝑉𝑠

2𝑒2𝑖𝜃′𝑉𝑠)

(𝐼𝑟𝑉𝑠𝑒
𝑖𝜃′𝑉𝑠 − 𝐼𝑠𝑉𝑟𝑒

𝑖(𝜃′𝑉𝑟+𝜃′𝐼𝑠))2
 

(22) 

𝜕𝑍

∂𝑉𝑟

=
2𝑉𝑟𝑒

2𝑖𝜃′𝑉𝑟

𝐼𝑟𝑉𝑠𝑒
𝑖𝜃′𝑉𝑠 − 𝐼𝑠𝑉𝑟𝑒

𝑖(𝜃′𝑉𝑟+𝜃′𝐼𝑠)

+
𝐼𝑠𝑒

𝑖(𝜃′𝑉𝑟+𝜃′𝐼𝑠)(𝑉𝑟
2𝑒2𝑖𝜃′𝑉𝑟 − 𝑉𝑠

2𝑒2𝑖𝜃′𝑉𝑠)

(𝐼𝑟𝑉𝑠𝑒
𝑖𝜃′𝑉𝑠 − 𝐼𝑠𝑉𝑟𝑒

𝑖(𝜃′𝑉𝑟+𝜃′𝐼𝑠))2
 

(23) 

𝜕𝑍

∂𝐼𝑠
=

𝑉𝑟𝑒
𝑖(𝜃′𝑉𝑟+𝜃′𝐼𝑠)(𝑉𝑟

2𝑒2𝑖𝜃′𝑉𝑟 − 𝑉𝑠
2𝑒2𝑖𝜃′𝑉𝑠)

(𝐼𝑟𝑉𝑠𝑒
𝑖𝜃′𝑉𝑠 − 𝐼𝑠𝑉𝑟𝑒

𝑖(𝜃′𝑉𝑟+𝜃′𝐼𝑠))2
 (24) 

𝜕𝑍

∂𝐼𝑟
= −

𝑉𝑠𝑒
𝑖𝜃′𝑉𝑠(𝑉𝑟

2𝑒2𝑖𝜃′𝑉𝑟 − 𝑉𝑠
2𝑒2𝑖𝜃′𝑉𝑠)

(𝐼𝑟𝑉𝑠𝑒
𝑖𝜃′𝑉𝑠 − 𝐼𝑠𝑉𝑟𝑒

𝑖(𝜃′𝑉𝑟+𝜃′𝐼𝑠))2
 

(25) 

𝜕𝑍

∂𝜃𝑉𝑠′
= −

2𝑖𝑉𝑠
2𝑒2𝑖𝜃′𝑉𝑠

𝐼𝑟𝑉𝑠𝑒
𝑖𝜃′𝑉𝑠 − 𝐼𝑠𝑉𝑟𝑒

𝑖(𝜃′𝑉𝑟+𝜃′𝐼𝑠)

−
𝑖𝐼𝑟𝑉𝑠𝑒

𝑖𝜃′𝑉𝑠(𝑉𝑟
2𝑒2𝑖𝜃′𝑉𝑟 − 𝑉𝑠

2𝑒2𝑖𝜃′𝑉𝑠)

(𝐼𝑟𝑉𝑠𝑒
𝑖𝜃′𝑉𝑠 − 𝐼𝑠𝑉𝑟𝑒

𝑖(𝜃′𝑉𝑟+𝜃′𝐼𝑠))2
 

(26) 

𝜕𝑍

∂𝜃𝑉𝑟′
=

2𝑖𝑉𝑟
2𝑒2𝑖θ′𝑉𝑟

𝐼𝑟𝑉𝑠𝑒
𝑖𝜃′𝑉𝑠 − 𝐼𝑠𝑉𝑟𝑒

𝑖(𝜃′𝑉𝑟+𝜃′𝐼𝑠)
 

−
𝑖𝐼𝑠𝑉𝑟𝑒

𝑖(𝜃′𝑉𝑟+𝜃′𝐼𝑠)(𝑉𝑟
2𝑒2𝑖θ′𝑉𝑟 − 𝑉𝑠

2𝑒2𝑖𝜃′𝑉𝑠)

(𝐼𝑟𝑉𝑠𝑒
𝑖𝜃′𝑉𝑠 − 𝐼𝑠𝑉𝑟𝑒

𝑖(𝜃′𝑉𝑟+𝜃′𝐼𝑠))2
 

(27) 

𝜕𝑍

∂𝜃𝐼𝑠′
=

𝑖𝐼𝑠𝑉𝑟𝑒
𝑖(𝜃′𝑉𝑟+𝜃′𝐼𝑠)(𝑉𝑟

2𝑒2𝑖𝜃′𝑉𝑟 − 𝑉𝑠
2𝑒2𝑖𝜃′𝑉𝑠)

(𝐼𝑟𝑉𝑠𝑒
𝑖𝜃′𝑉𝑠 − 𝐼𝑠𝑉𝑟𝑒

𝑖(𝜃′𝑉𝑟+𝜃′𝐼𝑠))2
 

(28) 

 

𝐴𝑅 = 𝑟𝑒𝑎𝑙(
𝜕𝑍

𝜕𝑉𝑠
) , 𝐴𝑋 = 𝑖𝑚𝑎𝑔(

𝜕𝑍

𝜕𝑉𝑠
) , 𝐵𝑅 = 𝑟𝑒𝑎𝑙(

𝜕𝑅

𝜕𝑉𝑟
) ,  𝐵𝑋 =

𝑖𝑚𝑎𝑔(
𝜕𝑅

𝜕𝑉𝑟
) , 𝐶𝑅 = 𝑟𝑒𝑎𝑙(

𝜕𝑍

∂𝐼𝑠
) , 𝐶𝑋 = 𝑖𝑚𝑎𝑔 (

𝜕𝑍

∂𝐼𝑠
) , 𝐷𝑅 =

𝑟𝑒𝑎𝑙 (
𝜕𝑍

∂𝐼𝑟
) , 𝐷𝑋 = 𝑖𝑚𝑎𝑔 (

𝜕𝑍

∂𝐼𝑟
) , 𝐸𝑅 = 𝑟𝑒𝑎𝑙(

𝜕𝑍

∂𝜃′𝑉𝑠
) , 𝐸𝑋 =

𝑖𝑚𝑎𝑔 (
𝜕𝑍

∂𝜃′𝑉𝑠
) , 𝐹𝑅 = 𝑟𝑒𝑎𝑙(

𝜕𝑍

∂θ′𝑉𝑟
) , 𝐹𝑋 = 𝑖𝑚𝑎𝑔 (

𝜕𝑍

∂θ′𝑉𝑟
) , 𝐺𝑅 =

𝑟𝑒𝑎𝑙(
𝜕𝑍

∂𝜃𝐼𝑠′
), 𝐺𝑋 = 𝑖𝑚𝑎𝑔(

𝜕𝑍

∂𝜃𝐼𝑠′
). By the same means, the partial 

derivative equations of Y to each PMU components can be 

generated and 𝐴𝐵, 𝐵𝐵 ⋯𝐺𝐵 can be calculated accordingly. Due 

to the space limitation, they are not presented here. 

APPENDIX II 

A transmission line with two PMUs installed at both 

terminals is simulated in this study using Matlab/Simulink with 

specifications shown in Table VIII. 

TABLE VIII  

SPECIFICATIONS OF THE SIMULATED TRANSMISSION LINE 

Variables Description, Unit Value 

Rline line resistance, 𝛺/𝑘𝑚 0.013333 

Lline line inductances, H/𝑘𝑚 7.4342e-4 

Cline line capacitances, 𝐹/𝑘𝑚 1.0001e-8 

D length of line, km 150 

fsource source frequency, Hz 60 

Voltage level kV 500 
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