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Voltage Stability Analysis of Power Systems with
Induction Motors Based on Holomorphic

Embedding
Rui Yao, Member, IEEE, Kai Sun, Senior Member, IEEE, Di Shi, Senior Member, IEEE,

Xiaohu Zhang, Member, IEEE

Abstract—Load characteristics have substantial influence on
the voltage stability of power systems. The self-restorative char-
acteristic and stalling of induction motor loads can deteriorate
the voltage stability, so it is necessary to develop accurate and
efficient dynamic analysis methods for voltage stability analysis
of systems with induction motor loads. In this paper, a set of
methods based on holomorphic embedding is proposed, which
is able to solve steady states and dynamics of a power system
with induction motors. The paper is the first work that applies
holomorphic embedding to dynamic problems of power systems.
The test cases on the IEEE 14-bus system, the NPCC 140-bus
system and the Polish 2383-bus system verify both accuracy and
efficiency of the proposed methods.

Index Terms—Voltage stability, load model, induction motor,
stability analysis, approximation, dynamic simulation, analytical
method, holomorphic embedding, quasi-steady-state.

I. INTRODUCTION

INDUCTION motor loads have significant influence on volt-
age stability of power systems [1]–[3]. The self-restorative

characteristic of induction motors contributes to voltage in-
stability. Moreover, the low voltage caused by insufficient
voltage support or faults can cause motors to stall. The stalling
motors cause delayed voltage recovery and thus exacerbate
voltage instability [4]. The voltage stability analysis (VSA)
with induction motor loads has been studied or discussed
in some literature over the past years. Strictly speaking, the
VSA with induction motors is a dynamic problem [1], [5]–
[7], but the traditional dynamic simulation methods based
on numerical integration are computationally expensive [8],
[9]. For long-term VSA with slow load growth, the gen-
erator and motor dynamics are much faster than the load
increase, and thus a quasi-steady state (QSS) method can be
utilized. The QSS method degenerates differential equations
of the studied system to algebraic equations, and replaces
the time-domain solutions of differential-algebraic equations
by the trace of algebraic equation solutions [10]. In either
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the dynamic simulation or the QSS method, solving nonlinear
algebraic equations is necessary. However, in traditional VSA
methods, solving the algebraic equations may suffer from
numerical problems, especially when the system is close
to singularity. In summary, the conventional VSA methods
have two major difficulties: 1) the inefficiency of dynamic
simulation based on numerical integration technique; 2) the
difficulty of numerical convergence when solving nonlinear
algebraic equations.

In recent years, the holomorphic embedding (HE) method
has been utilized to solve algebraic equations of power systems
and achieved considerable success in improving the conver-
gence and computational efficiency [11]–[17]. The HE method
represents the solution of the equations as a power series of
an embedding variable in the complex domain despite the fact
that a practical solution always has the embedding variable
take a real value. At the original point of the power series,
the solution is already known or easily acquired. Thus, the
computation of HE is to derive the coefficients in the power
series. The Padé approximation can also be used to further
increase the convergence range of the series [18]. Moreover,
the multi-stage HE method proposed in [19] for static VSA
can improve precision and effectively reduce the number of
terms in Padé approximants.

As commented in [12] and [15], the HE is a high-order
analytic continuation method and thus has a much larger
effective range than the traditional homotopy method which
uses a limited order for continuation. Therefore, as a very
promising methodology for static VSA, HE can be further
extended to solve the power flow equations with more complex
loads like induction motor models. Moreover, considering
the essence of the popular numerical integration methods for
dynamic simulation (e.g. the Euler method and Runge-Kutta
method), they can only limit the error to a relatively low order,
and thus the time step is constrained to a very small number.
Analogously, the idea of HE can also be utilized in dynamic
simulation to achieve much larger time steps of computation,
thus significantly reducing the number of steps and improving
the speed of simulation.

This paper studies the voltage stability analysis with the
presence of induction motor loads by using HE. The major
contributions of this paper are:

1) The HE formulations of induction motor models are
proposed, which enriches the capability of HE methodology
in power system analysis.
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2) The HE formulations utilize grid-load interface, with
which the computation of the grid and the loads is decom-
posed and the computation tasks on different loads can be
parallelized, so the computation efficiency is enhanced.

3) The dynamic simulation for VSA based on HE is
realized. This is the first research work using HE for dynamic
analysis in power systems. With HE, the time step in simula-
tion is much larger than that in the traditional methods, and
the computation speed is significantly improved.

The rest of the paper is organized as follows. The HE
formulations and algorithms for power flow, static VSA and
the dynamic simulation for VSA with induction motors are
proposed in Section II. The multi-stage VSA based on QSS
and dynamic simulation with HE are proposed in Section III.
The test cases on the IEEE 14-bus system, the NPCC 140-
bus system and the Polish 2383-bus system are in Section IV.
Section V is the conclusion.

II. HOLOMORPHIC EMBEDDING FORMULATIONS

A. HE-I: solving power flow from trivial germ solution

From the grid side, the power flow equation on each bus is

S∗iW
∗
i −

∑
l

Y tril Vl − Y shi Vi − ILi = 0, (1)

where “*” means conjugation, Vi is the voltage phasor on bus
i, whose reciprocal is Wi. For PQ buses, Si = Pi + jQi
is given. For PV buses, Pi is given, and the voltage should
satisfy magnitude constraint ViV ∗i = |V spi |2. The V spi means
a specified voltage phasor. For PV buses, only its magnitude
|V spi | is needed, so the angle of phasor V spi can be simply
set as 0, and the magnitude is set as |V spi |. For the swing
bus, the complete phasor V spi is known. Y tril is the serial
branch admittance between buses i and l, and Y shi is the shunt
admittance on bus i. ILi is the total load current (except const-
PQ and const-impedance loads that have been included in Si
and Y shi ) on bus i. The HE formulation for solving power
flow is constructed as follows:

Si(α)∗W ∗i (α)−
∑
l

Y tril Vl(α)− αY shi Vi(α)− ILi(α) = 0, (2)

where the embedding variable α ∈ C. For PQ buses, Si(α) =
α(Pi + jQi) is known. For PV buses Si(α) = αPi + jQi(α)
and reactive power Qi(α) needs to be calculated. And the HE
formulations of the voltages on PV and slack buses are

Vi(α)V ∗i (α)− 1− α(|V spi |
2 − 1) = 0, i ∈ SPV

Vi(α)− 1− α(V spi − 1) = 0, i ∈ SSL,
(3)

where SPV and SSL represent the sets of PV and slack
buses, respectively. The term “trivial germ solution” is the
state Vi[0] = 1, Qi[0] = 0 (for PV buses) and ILi[0] = 0. The
trivial germ solution satisfies (2) and (3) when α = 0. The
variables in HE are represented as power series of α, such as

Vi(α) = Vi[0] + Vi[1]α+ Vi[2]α2 + Vi[3]α3 + · · · . (4)

In this paper, each coefficient of the power series is denoted
by the variable name followed by a square-bracketed index,

e.g. Vi[k] for Vi(α). HE solves the coefficients like Vi[n].
Similar to [13], Vi[n] and Qi[n] are obtained by solving (5):

−B11 G11 · · · −B1i 0 · · · −B1N G1N

G11 B11 · · · G1i 0 · · · G1N B1N

...
...

...
...

...
...

...
...

−Bi1 Gi1 · · · −Bii 0 · · · −BiN GiN
Gi1 Bi1 · · · Gii 1 · · · GiN BiN

...
...

...
...

...
...

...
...

−BN1 GN1 · · · −BNi 0 · · · −BNN GNN
GN1 BN1 · · · GNi 0 · · · GNN BNN





D1[n]
C1[n]

...
Di[n]
Qi[n]

...
DN [n]
CN [n]



=



<(Γ1[n])
=(Γ1[n])

...
<(Γi[n])
=(Γi[n])

...
<(ΓN [n])
=(ΓN [n])


−

∑
j∈SPV

⋃
SSL



G1j

B1j

...
Gij
Bij

...
GNj
BNj


Cj [n]−

∑
j∈SSL



−B1j

G1j

...
−Bij
Gij

...
−BNj
GNj


Dj [n],

(5)

where Gil and Bil are real and imaginary parts of the
admittance Y tril . Ci[n] and Di[n] are real and imaginary parts
of Vi[n]. <(·) and =(·) are real and imaginary operators. In
(5), for PQ buses,

Γi[n] = S∗iW
∗
i [n− 1]− Y shi Vi[n− 1]− ILi[n], (6)

and for PV buses,

Γi[n] = PiW
∗
i [n− 1]− j

n−1∑
k=0

Qi[k]W ∗i [n− k]− Y shi Vi[n− 1]− ILi[n].

(7)
From (3) the C[n] terms on the right-hand side of (5) are

Ci[n] =
1

2Ci[0]

(
δn,1(|V spi |

2 − 1)−
n−1∑
k=1

Vi[k]V ∗i [n− k]

)
, (8)

where δn,1 is 1 for n = 1 and 0 for n 6= 1. To solve
(5), the load current ILi[n] should be determined first. ILi[n]
can be viewed as a load-grid interface, which decomposes
the computation of the grid and loads. Here we only discuss
ILi[n] as the current of induction motors. If there are multiple
induction motors (labeled as m) on bus i, then

ILi[n] =
∑
m

ILim[n]. (9)

Fig. 1. Equivalent circuit of induction motor.

Next, the HE formulation of an induction motor will be
established. As a general guideline, the HE formulation should
satisfy the following requirements.

1) The correctness of the mathematical model. At α = 1,
the HE formulation must be equivalent to the original mathe-
matical model of the studied element or system.

2) The germ solution should be easy to obtain. At α = 0,
the solution of the HE formulation is either trivial or known.
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Take the most commonly used model of induction motors
for analysis, whose equivalent circuit is shown in Fig. 1.
The circuit has an internal node whose voltage is denoted
as VMim(α). Following the above-mentioned rules, the con-
struction of the trivial germ solution should satisfy: 1) the
voltages on all buses are identical. 2) the current on each
branch is 0. Thus consequently, the admittance of every shunt
branch should be 0. So in the HE formulation of induction
motors, the impedance of the excitation branch is constructed
as Zeim/α to make 0 admittance. While for the rotor side, the
manipulation can be achieved by modifying the mechanical
torque as αTim(sim). When α = 0, the zero mechanical
torque will guarantee IRim = 0. The following equations are
listed for HE:

VMim(α) = Vi(α)− ILim(α)Z1im

ILim(α) = IRim(α) +
αVMim(α)

Zeim

IRim(α)I∗Rim(α) =
αTim(sim(α))sim(α)

R2im

IRim(α) (R2im + jX2imsim(α)) = VMim(α)sim(α),

(10)

where the mechanical torque Tim depends on the slip sim,
and usually it is assumed as a quadratic function of sim [20]

Tim(sim) = T0im + T1imsim + T2ims
2
im. (11)

The germ solution of the embedding form (10) is
VMim[0] = 1, ILim[0] = 0, IRim[0] = 0, sim[0] = 0. From
(10), the equations of the coefficients (12)-(15) are obtained
((14) and (15) are at the bottom of the page):

ILim[n] = IRim[n] +
VMim[n− 1]

Zeim
, (12)

VMim[n] = Vi[n]− ILim[n]Z1im, (13)

When n = 1, (14) and (15) become:

IRim[1]I∗Rim[1] =
T0imsim[1]

R2im
, (16)

IRim[1]R2im = VMim[0]sim[1]. (17)

From (16) and (17),

IRim[1] = T0im, sim[1] = T0imR2im. (18)

When n > 1, note that IRim[0] = 0, sim[0] = 0, (14)-(15)
become linear equations of IRim[n] and sim[n]. Therefore,
IRim[n] and sim[n] can be solved from (14)-(15), and ILim[n]

is obtained from (12). The load current term ILim[n] is put into
(5) and the states in the grid Vi[n], Wi[n], Qi[n] are solved.
Finally, with Vi[n] and ILim[n], VMim[n] is obtained from
(13). Such a procedure is clearly structured as the load-grid
two-stage computation. Also, since solving (12)-(15) does not
involve the variables other than the studied induction motor,
here the states of all induction motors can be calculated in
parallel. Moreover, it is proven that HE-I generally guarantees
convergence to the low-slip stable solution (see Appendix A).

B. HE-II: continuation from non-trivial germ

The HE-I is for the computation of a single power flow
state, and its germ solution usually does not correspond to
a real state. In VSA, it is desirable to study the trace of
system states when the system configuration changes, e.g. load
increases in a direction. Deriving and solving such a problem
(denoted as HE-II) is similar, i.e. describing the variables as a
power series of α and then solve the coefficients of the series.
Denoting the embedding variable α as the loading factor, the
HE formulation for bus i is

(Pi(α)− jQi(α))W ∗i (α)−
∑
l

YilVl(α)− ILi(α) = 0. (19)

For PQ buses, the Pi(α) and Qi(α) are known, while for
PV buses, only Pi(α) is known and Qi(α) is to be calculated.
The voltage equations for PV and slack buses are:

Vi(α)V ∗i (α) = |V spi |
2, i ∈ SPV

Vi(α) = V spi , i ∈ SSL.
(20)

From (19)-(20) the coefficients of the HE satisfy
n∑
k=0

(Pi[k]− jQi[k])W ∗i [n− k]−
∑
l

YilVl[n]− ILi[n] = 0, (21)

n∑
k=0

Vi[k]V ∗i [n− k] =

{
|V spi |2, n = 0
0, n > 0

. (22)

For the induction motor loads, the equations are:

VMim(α) = Vi(α)− ILim(α)Z1im

ILim(α) = IRim(α) +
VMim(α)

Zeim
<{VMim(α)I∗Rim(α)} = (r0im + r1imα)Tim(sim(α))

IRim(α) (R2im + jX2imsim(α)) = VMim(α)sim(α),

(23)

where r0im is the base mechanical torque level, and r1im
represents the growth direction of mechanical torque.

n+1∑
k=0

IRim[k]I∗Rim[n+ 1− k]

=
1

R2im

(
T0imsim[n] + T1im

n∑
k=0

sim[k]sim[n− k] + T2im

n∑
k=0

n−k∑
l=0

sim[k]sim[l]sim[n− k − l]

)
,

(14)

IRim[n]R2im + jX2im

n∑
k=0

IRim[k]sim[n− k] =

n∑
k=0

VMim[k]sim[n− k]. (15)
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It should be noted that although the formulations of HE-
I and HE-II look similar, the underlying studied problem and
the physical meaning are different. For HE-I, the purpose is to
obtain a single steady-state power flow solution corresponding
to α = 1. In HE-I, α is only an embedding variable connecting
between the trivial germ solution (α = 0) and the desired
solution (α = 1), and it does not have a physical meaning.
While the purpose of HE-II is to study the trace of system state
when the load increases. In HE-II, α represents the loading
factor. Any α ∈ R can represent a physically existing state of
the system. So in (23) the induction motor should keep the
excitation impedance as Zeim rather than Zeim/α in (10). In
steady-state VSA, it is usually assumed that the load grows
linearly with the loading factor, so in (19), the active and
reactive power are expressed as Pi(α) = P0i + αP1i and
Qi(α) = Q0i + αQ1i, respectively. Similarly in (23), the
term (r0im+r1imα)Tim(sim(α)) represents the linear growth
of mechanical torque with loading factor α. To solve HE-
II, it is assumed that the germ solution (which is a steady-
state physical solution) is known. The germ solution can be
given by HE-I/II or other methods for solving power flows.
Generally, given the analytic algebraic equations, a proper HE
formulation can be established and the problem can be solved.
So the application can also be further extended to include
generation control [21], outage analysis [22], [23], etc.

From (20)-(22), and renumbering the PQ buses before the
PV buses, the HE coefficients can be derived by solving the
following equations:


−G B D(P [0]) −D(Q[0])
0

−D(FPV [0])

−B −G −D(Q[0]) −D(P [0])
0

−D(EPV [0])
0 D(CPV [0]) 0 D(DPV [0]) 0 0 0
D(E[0]) −D(F [0]) D(C[0]) −D(D[0]) 0
D(F [0]) D(E[0]) D(D[0]) D(C[0]) 0




C[n]
D[n]
E[n]
F [n]

QPV [n]



=



<

(
−

n∑
k=1

PPQ[k] ◦W ∗PQ[n− k] + j
n∑
k=1

QPQ[k] ◦W ∗PQ[n− k] + ILPQ[n]

)

<

(
−

n∑
k=1

PPV [k] ◦W ∗PV [n− k] + j
n−1∑
k=1

QPV [k] ◦W ∗PV [n− k] + ILPV [n]

)

=

(
−

n∑
k=1

PPQ[k] ◦W ∗PQ[n− k] + j
n∑
k=1

QPQ[k] ◦W ∗PQ[n− k] + ILPQ[n]

)

=

(
−

n∑
k=1

PPV [k] ◦W ∗PV [n− k] + j

n−1∑
k=1

QPV [k] ◦W ∗PV [n− k] + ILPV [n]

)

−1

2

n−1∑
k=1

VPV [k] ◦ V ∗PV [n− k]

<

(
−
n−1∑
k=1

W [k] ◦ V [n− k]

)

=

(
−
n−1∑
k=1

W [k] ◦ V [n− k]

)



,

(24)
where Ei and Fi are real and imaginary parts of Wi, D(·)
means diagonal matrix, “◦” means element-wise product.

Similar to HE-I, eq. (24) contains terms of induction motor
currents ILPQ[n] and ILPV [n] (denoting ILim[n] on PQ and
PV buses, respectively). From (23), the HE formulation of each
induction motor has the equations (25) (next page). The terms
aim, bim, and cim in (25) are listed separately as follows:

aim = −IRimIm[0]X2im − Ci[0] + ILimRe[0]R1im − ILimIm[n]X1im (26)

bim = IRimRe[0]X2im −Di[0] + ILimRe[0]X1im + ILimIm[n]R1im (27)

cim = −r0im (T1im + 2T2imsim[0]) . (28)

Eq. (25) has 7 unknowns and 5 equations. Eliminating
IRimRe[n], IRimIm[n] and sim[n], the load currents ILimRe[n],
ILimIm[n] change linearly with Ci[n] and Di[n]:[

ILimRe[n]
ILimIm[n]

]
= Aim

[
Ci[n]
Di[n]

]
+Bim. (29)

Aggregating all the currents of motor loads on each bus[
ILiRe[n]
ILiIm[n]

]
=

(∑
m

Aim

)[
Ci[n]
Di[n]

]
+
∑
m

Bim, (30)

and substituting (30) into (24) and canceling IL terms, the
grid terms C[n], D[n], E[n], F [n] and QPV [n] are solved.
Placing C[n], D[n] back to (25) will solve the states of
induction motors IRimRe[n], IRimIm[n], ILimRe[n], ILimIm[n]
and sim[n].

As for the computational complexity of HE-II, the major
computation burden is on solving the linear equations in (24)
and (25). Since the matrices are constant, the factorization
of matrices is needed only once and the computation can be
significantly accelerated.

C. HE-III: solving dynamics of induction motors

HE-II is based on the QSS assumption without dynamic
modeling. However, when analyzing motor stalling, dynamic
modeling and simulation in time domain is necessary. In
the formulation of HE-II, with a common assumption in
steady-state VSA that the loading factor increases linearly
with time, the loading factor α also implicitly represents
the time elapse. If t is explicitly used instead of α as the
embedding variable, the solution naturally gives the evolution
of states in time domain. In this regard, the HE-III formulation
is proposed, which applies the holomorphic embedding into
dynamic simulation.

In VSA, assume the system does not have any angle stability
problem, so the dynamic models of synchronous generators
are not considered, and the generator buses are still modeled
as constant-voltage sources connected to PV or slack buses.
Therefore, in HE-III, the power flow equations of the system
except for induction motors are the same as those in HE-II.
In long-term VSA, the electro-magnetic transients of motors
can also be neglected, and differential equations only include
rotor acceleration equations:

2Him
dsim

dt
= (r0im + r1imt)Tim(sim)−<{VMimI

∗
Rim}. (31)

In HE-III, the embedding variable becomes time t, and the
solution represents the evolution of states in time domain. Take
(31) as an example. Assume the slip sim(t) as

sim(t) =

∞∑
k=0

sim[k]tk, (32)

then the derivative of sim with respect to t is

dsim
dt

=

∞∑
k=1

ksim[k]tk−1. (33)
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
R2im −X2imsim[0] R1imsim[0] −X1imsim[0] aim −sim[0] 0

X2imsim[0] R2im X1imsim[0] R1imsim[0] bim 0 −sim[0]
<{VMim[0]} ={VMim[0]} 0 0 cim 0 0
−1 0 1 + <(Z1im/Zeim) −=(Z1im/Zeim) 0 −<(1/Zeim) =(1/Zeim)
0 −1 =(Z1im/Zeim) 1 + <(Z1im/Zeim) 0 −=(1/Zeim) −<(1/Zeim)





IRimRe[n]
IRimIm[n]
ILimRe[n]
ILimIm[n]
sim[n]
Ci[n]
Di[n]



=



<
(∑n−1

k=1 VMim[k]sim[n− k]− jX2im

∑n−1
k=1 IRim[k]sim[n− k]

)
=
(∑n−1

k=1 VMim[k]sim[n− k]− jX2im

∑n−1
k=1 IRim[k]sim[n− k]

)
−<{

∑n
k=1 VMim[k]I∗Rim[n− k]}+ r0im

(
T2im

∑n−1
k=1 sim[k]sim[n− k]

)
+r1im

(
T0imδ(n, 1) + T1imsim[n− 1] + T2im

∑n−1
k=0 sim[k]sim[n− 1− k]

)
0
0



(25)

From (31) the equations for the coefficients of the terms of
the same order can be obtained:

2(n+ 1)Himsim[n+ 1] =

r0im

T0imδn,0 + T1imsim[n] + T2im
∑
i+j=n

sim[i]sim[j]

+

r1im

T0imδn,1 + T1imsim[n− 1] + T2im
∑
i+j=n

sim[i]sim[j]

−
<

 ∑
i+j=n

VMim[i]I∗Rim[j]

.
(34)

It shows that sim[n] can be derived from all the terms
of orders up to n − 1. The equations of induction motors
in HE-III are similar to (25). Remove the third equation of
(25), substitute sim[n] into other equations (25), and elimi-
nate IRimRe[n], IRimIm[n] terms will get similar relationship
between ILimRe[n], ILimIm[n] and Ci[n], Di[n] like (29), and
then the following procedure is the same with HE-II.

HE-III flexibly allows dynamic modeling on only part of the
motors while maintaining steady-state modeling on the other
motors. The motors modeled in steady-state have the same
formulation as that in HE-II.

III. VSA USING HOLOMORPHIC EMBEDDING

A. Extend effective range by using Padé approximation

A power series usually has a limited radius of convergence,
so the series derived by HE become ineffective beyond the
radius. Moreover, the truncated power series tends to have an
even smaller effective range under given accuracy tolerance.
To overcome such a disadvantage of power series, the Padé
approximants can be used to extend the effective range [12],
[13]. Although some extra computation is needed for deriving
the Padé approximants from power series, the HE using Padé
approximants still has advantage in VSA because of its much
better convergence than power series. So in this paper, the Padé
approximants are used for the approximation of solutions.

B. Multi-stage HE scheme [19]

Even with Padé approximants, the effective range of ap-
proximation is still limited. Increasing the terms of Padé ap-
proximants can help extend the effective range. But when the
number of terms reaches a certain level, increasing it has little
effect in extending the effective approximation range. Also,
adding terms costs more time in deriving Padé approximants.
In this paper, the number of Padé approximants terms is
limited by NP , and in VSA, the effectiveness of approximants
is checked by comparing the equation balance with a tolerance
εE . The furthest point on the system state trace satisfying
the equation imbalance below εE is designated as the starting
point of the next stage. Such a multi-stage scheme guarantees
the accuracy of simulation until the collapse point without
requiring too many Padé terms, which saves computation time.

A remark is worth noticing on the modeling of the mechan-
ical torque of induction motors. In this paper the mechanical
torque adopts the commonly-used quadratic form (11), but HE
can also handle more general mechanical torque models. For
example, Tim(sim) as even higher-order polynomials can also
be solved with HE. Although the equations need modification,
the methodology is the same. Even more generally, Tim(sim)
in other forms can also be solved with HE. If Tim(sim) is
not in a polynomial form, then it can be approximated with
Taylor expansion as a truncated polynomial T ′im(sim). In this
case, the initial state sim0 can be selected as the original point
of Taylor expansion, and since this involves approximation,
the error can be tracked and controlled by using the multi-
stage HE scheme. Also, the switching of segments can also
be achieved with the multi-stage HE scheme.

C. Partial-QSS voltage stability analysis scheme [10]

The procedure for VSA using the partial-QSS method [10]
is shown in Fig. 2. We assume the ZIP/motor load grows
continuously at a certain pattern with time. Here we name the
method as “partial-QSS” because the simulation starts with
standard QSS method, but some motors switch to dynamic
model during the simulation. The multi-stage HE is used in
simulation, and when singularity occurs, the type of singularity
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is examined by using participation factors [10]. First, the
Jacobian matrix J of all the algebraic equations (including
the power flow equations on all buses and the equilibrium
equations of rotor motion of motors that are under QSS
assumption) is derived, then apply eigen decomposition to J:

J = PΛQ, (35)

and select the left and right eigenvectors pi and qi corre-
sponding to the smallest eigenvalue λi. Then the participation
factors of the jth algebraic equation are:

πj = pijqij . (36)

If any motor corresponds to a participation factor much
larger than the others (e.g. over 10 times that of any other),
then identify local singularity caused by the motor, switch the
motor to dynamic model in HE-III, and continue simulation.
Otherwise, if the participation factor of all motors are very
small, then the singularity is likely to be global.

Fig. 2. Flowchart of partial-QSS VSA.

D. Full-dynamic simulation

With HE-III, the time-domain simulation with dynamic
modeling of all motors can be implemented. The simulation
starts from a steady-state starting point derived by HE-I, and
then the multi-stage HE-III simulates system dynamics until
meeting global singularity. The full-dynamic simulation with
HE-III should be more accurate than the partial-QSS method,
and a significant boost in computation speed is expected as
compared with traditional numerical integration method.

IV. TEST CASES

A. IEEE 14-bus system

IEEE 14-bus system has 11 PQ buses, 4 PV buses and
1 slack bus. To test the HE in VSA with induction motors,
the IEEE 14-bus system is modified so that each PQ bus
is connected with an induction motor load. The average
percentage of induction motor load is 42.2%.

First test the HE-I in solving power flow. In HE, different
numbers of Padé approximant terms NP are selected, and the
results are checked with the maximum absolute imbalance
of the equations. As shown in Table. I, as NP grows, the
maximum equation imbalance decreases significantly, but the
computation time increases. The NP can be chosen based on
the actual demand of accuracy and computation speed.

TABLE I
ACCURACY AND EFFICIENCY OF HE-I IN IEEE 14-BUS SYSTEM CASE

NP Max. equation imbalance (pu) Computation time (s)

5 9.6× 10−3 0.019
10 1.4× 10−3 0.030
15 4.9× 10−5 0.043
20 3.0× 10−7 0.058
30 6.3× 10−10 0.074
40 1.7× 10−11 0.091

Next study the system state evolution under load increase.
The mechanical torque of induction motors is assumed as
Tim = T0(1 − s2im). In the 14-bus system, increase the PQ
load by 10% of base state value per second, and increase the
mechanical load by 2% per second, then use HE-II and HE-III
to do steady-state and dynamic simulations, respectively. For
both HE-II and HE-III, NP = 20. Under QSS assumptions,
the simulation stops at t = 6.286s, as Fig. 3 shows, the
imbalance of equations under HE-II is below 10−5, showing
that the HE-II itself is accurate. As Fig. 4 shows, the steady-
state solution exists at the intersection of the electric torque
and mechanical torque curves. At practical working points,
the slip is close to 0 (the left intersection point in Fig. 4).
When mechanical load increases (mechanical torque rises) or
voltage decreases (electric torque drops), the intersection point
will move towards the peak point of the electric torque with
slip increase. As mechanical load increases or voltage drops to
some extent, the intersection point near sim = 0 disappears,
which is a bifurcation, and the motor starts to stall. The
state of a stalling motor then moves to the only steady-state
solution near sim = 1. As Fig. 5 shows, the termination point
of simulation approximately matches the maximum electric
torque point of motor 4, which verifies the local bifurcation
caused by the motor [10]. At the local bifurcation point,
there is no steady-state solution in the vicinity, but it does
not mean the collapse of the whole system. The system
can still operate with increasing load, but the stalling motor
should be simulated in dynamic model (as was treated in
[10]), or alternatively, all the motors can be simulated with
dynamic models from the very beginning. We use HE-III
to simulate the dynamics of all the induction motor loads,
and as Fig. 5 shows, the HE-III successfully simulates the
stalling of the motor. Fig. 6 compares the results of HE-III
with that of the modified Euler method (a commonly-used
numerical integration method), it shows that the difference of
bus voltages is below 10−4 for the entire time span, and for
99% of the time span, the difference is below 10−6.

The results of HE is compared with those of the modified
Euler method under different time steps. For the modified
Euler method, time steps of ∆t = 0.01s, ∆t = 0.005s and
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Fig. 3. Imbalance of power flow equations of HE-II.

Fig. 4. Illustration of induction motor steady-state solutions (denoted by the
circles at the intersections of the curves).

∆t = 0.002s are selected. The metric selected for comparison
is the maximum imbalance of the DAEs. The results are shown
in Fig. 7. It can be seen that the equation imbalance of the
modified Euler method is much higher than that of HE-III.
Although reducing the time step achieves lower imbalance, to
achieve the same level of accuracy as HE-III, the time step of
the modified Euler method needs to be around ∆t = 10−4s,
which is impractically small. Therefore, HE-III has significant
advantage in accuracy over the modified Euler method as a
traditional numerical integration method.
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Fig. 5. Slip of motor on bus 4 in IEEE 14-bus system. The horizontal line
in the small figure corresponds to the slip at the maximum electric torque.

Fig. 6. Difference of voltage between HE-III and the modified Euler methods.

Fig. 7. Imbalance of equations: HE-III and the modified Euler methods.

B. NPCC 140-bus system

The NPCC system model [24] has 140 buses, including
45 PV buses, 94 PQ buses and 1 slack bus. The system is
also modified to add 54 induction motors to 54 PQ buses.
Moreover, ZIP loads can also be added to these buses. To
demonstrate the performance of the proposed method and
compare different load models, three system models are pro-
vided for analysis: 1) PQ modeling of load only, 2) ZIP
modeling of load, and 3) ZIP and induction motors.

The parameters of the ZIP and motor loads are adjusted so
that under the base condition, the system state is the same as
the original PQ-load only system model. The percentage of
each type of load on the 54 buses are shown in Fig. 8. For
the system model with ZIP load, the average percentage of
the ZIP components are: 17.0% for “Z”, 17.9% for “I” and
65.1% for “P”. And for system model with ZIP and induction
motor load, the average load components are: 8.0% for “Z”,
6.4% for “I”, 51.5% for “P”, and 34.1% for motor.
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Fig. 8. Percentage by load type on 54 load buses in NPCC system. (a) ZIP
load model; (b) ZIP + Motor load model. The x-axis represents the load buses.

The system models with only PQ loads or ZIP loads do not
have dynamic models, so the long-term VSA can be studied
with multi-stage HE-II. Assume the load increase on each bus
is 5% of its base state value per second. The time consumption
and the number of HE stages are listed in Table. II. For
comparison, the continuation power flow (CPF) in PQ-load
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model case takes 57 steps and 2.69s at best performance. This
test verifies satisfactory efficiency of the proposed HE method.

TABLE II
PERFORMANCE OF HE IN STATIC VSA

Load model Stages Time (s)

PQ 4 0.65
ZIP 7 1.41

Next test the dynamic simulation with induction motor
loads. In the NPCC system model, the inertial constants of
induction motors Him range from 0.5s-2s, and the average
value is 1.22s. The mechanical loads of induction motors
increase by 10% of base case values per second, and the other
types of loads increase by 5% of the base case value per
second. First use the partial-QSS method [10] implemented
in HE for simulation, and the motor slips are shown in Fig. 9.
Results show that the collapse point simulated by partial-QSS
scheme is at 7.856s.

Fig. 9. Motor slips of NPCC system obtained by partial-QSS with HE
(ZIP+Motor loads). The small figure shows the switching points when
induction motors start to stall.

Full-dynamic simulation with HE-III is also conducted in
the same system. The voltage of buses and motor slips are
shown in Figs. 10 and 11. With full-dynamic simulation,
the system collapse point is reached at 7.856s. The system
state traces are also benchmarked with traditional numerical
integration methods, and the differences of bus voltages are
shown in Fig. 12. The result shows that the voltage difference
is under 2× 10−4p.u. for over 99% of the time span, and the
difference is under 1.5×10−3p.u. for the entire process, which
shows satisfactory accuracy of the proposed HE method.

In this case, the partial-QSS simulation results are also quite
close to those derived by full-dynamic simulation. But due
to QSS assumption, the accuracy is compromised. Also, the
HE using the partial-QSS scheme is not as efficient as full-
dynamic HE. The partial-QSS scheme needs additional efforts
for switching motors from static to dynamic model. Moreover,
the switching of motor models causes errors with the equa-
tions, and thus shortens the length of each stage that HE can
reach. Fig. 13 shows that the equation imbalance of partial-
QSS scheme grows significantly where many motors switch
to dynamic model, and finally causing more than 10 times the
equation imbalance that of full-dynamic simulation scheme.
In contrast, the full-dynamic simulation scheme implemented
in HE has nearly stable equation imbalance.

Fig. 10. Bus voltage of NPCC system (ZIP+Motor load).

Fig. 11. Motor slip in NPCC system (ZIP+Motor load).

In terms of computation efficiency, Table. III compares the
modified Euler method, the HE with partial-QSS scheme, and
HE full-dynamic simulation. The modified Euler method uses
a fixed step length of 0.002s, which is the largest available step
length without causing a significant numerical simulation error.
The partial-QSS simulation implemented with HE is much
faster than the numerical integration method. Nevertheless,
the full-dynamic simulation with HE is even faster, and it
is also advantageous in accuracy. These test results exhibit
the promising potential of holomorphic embedding in dynamic
analysis of power systems.

Fig. 12. Comparison between HE (full-dynamic) and modified Euler method.

TABLE III
COMPUTATIONAL EFFICIENCY COMPARISON IN NPCC SYSTEM

Simulation methods Stages/Steps Avg. step len.(s) Time cost(s)

Modified Euler 3928 0.002 1150.1
HE (partial-QSS) 105 0.0748 31.19
HE (full-dynamic) 55 0.143 13.95
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Fig. 13. Comparison of steps and equation mismatch between partial-QSS
and full-dynamic schemes.

C. Polish test system

To further demonstrate the capability of the proposed ap-
proach for VSA, Polish test system [25] is utilized in this case.
The system has 2383 buses, including 2056 PQ buses and 326
PV buses. There are 1562 ZIP loads and 1542 induction motors
in the system. In such a complex test, the Newton-Ralphson
method faces difficulty in solving the nonlinear algebraic
equations of the system, so for the traditional numerical
integration approaches, the time step is restricted to a very
small value. By testing, the time step for the modified Euler
method is set as 0.002s. Assume the PQ/ZIP load increase
on each bus is 10% of its base-state value per second, and
the mechanical torque of each induction motor increases by
50% of its base-state value per second. The results of the
two methods match well. As Fig. 14 shows, the difference
of bus voltage is below 2 × 10−4p.u. for above 99% of the
time span. But in terms of computational efficiency, the two
approaches differ significantly. The HE is significantly faster
than the modified Euler method. And the result shows that
the VSA based on HE can be finished within a minute on
the Polish system with many static and dynamic loads, so this
HE-based approach is promising for accurate online VSA.

Fig. 14. Comparison of results between HE (full-dynamic) and modified
Euler method on Polish test system.

V. CONCLUSION

This paper proposes a set of systematic solutions for voltage
stability analysis (VSA) with induction motor loads by using
holomorphic embedding (HE). Three formulations of HE are
proposed for solving power system, QSS state trace under load

TABLE IV
COMPUTATIONAL EFFICIENCY COMPARISON IN POLISH SYSTEM

Simulation methods Time cost(s)

Modified Euler 2840.4
HE (full-dynamic) 28.63

increase, and system dynamics under load increase, respec-
tively. The algorithms for solving the three HE formulations
are also elucidated. Then, with Padé approximation and multi-
stage continuation techniques to extend the effective range of
HE, the partial-QSS simulation and full-dynamic simulation
methods based on HE are realized, respectively. This paper
is the first research work which applies HE in dynamic
simulation for VSA of power systems.

The proposed VSA methods based on HE are tested on the
IEEE 14-bus test system, an NPCC 140-bus system and Polish
2383-bus system. By comparing with traditional methods such
as continuation power flow and dynamic simulation based
on numerical integration, the accuracy of the proposed HE-
based methods is verified. Moreover, the tests on NPCC
140-bus system and Polish 2383-bus system shows that the
proposed HE method is significantly faster than that of the
modified Euler method, which reveals very promising potential
of holomorphic embedding methodology in dynamic analysis
of power systems.

APPENDIX A
THE CONVERGENCE OF HE-I

The HE-I formulation (10) is equivalent to an induction
motor with excitation impedance as Zeim/α, and mechanical
torque characteristics as αTim(sim). The desired solution is at
α = 1. Without losing generality, assume the external voltage
Vi to be constant. Eliminating VMim, IRim and ILim, the
equations (10) can be converted to one equation denoted as
g(sim, α) = 0. Specifically, g(sim, α) = 0 represents the bal-
ance between electric torque Tie and mechanical torque Tim,
which can be further written as Tie(sim, α)−αTim(sim) = 0.
For g(sim, α) = 0 we have the following remark:

Remark A1: According to the implicit function theorem
(ImFT) [26], at a point (sim0, α0) satisfying g(sim0, α0) = 0,
if ∂g

∂sim
is invertible, then there exists an open interval U

containing α0, and in U exists a unique continuous differential
function sim(α) satisfying g(sim(α), α) = 0 for all α ∈ U .
Additionally, as g(sim, α) is analytic (i.e. infinitely differen-
tiable), sim(α) is also an analytic function where α ∈ U ,
which means the Taylor series of sim(α) about ∀α′0 ∈ U
converges to the function sim(α) in a domain UR ⊂ U .

Noticing that Zeim/α usually has a large value, ignoring
the excitation branch on the equivalent circuit does not incur
much error, but the equation is much simpler:

|Vi|2R2imsim
R2

2im + 2R2imR1imsim + [R2
1im + (X1im +X2im)2]s2im

− αTim(sim) = 0

(37)

The first term as approximately the electric torque of the
induction motor does not change with α, and the second term
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is α times the mechanical torque characteristics. The solution
sim is the intersection point of electric torque and mechanical
torque, as is shown in Fig. 15. From α = 0, sim = 0, as
α grows from 0 to 1, according to the Remark A1, sim(α)
is continuous if ∂g

∂sim
6= 0. And since sim(α) is analytic,

in a neighborhood of a given α0, sim(α) can always be
approximated by the Taylor series about α0. Therefore, on
the condition that ∂g

∂sim
6= 0 in α ∈ [0, 1], the solution of (10)

can be satisfactorily approximated by using multi-stage HE.

Fig. 15. Illustration of the steady-state slip of an induction motor.

Noticing that g(sim, α) = Tie(sim, α) − αTim(sim), the
condition ∂g

∂sim
6= 0 is equivalent to ∂Tie(sim,α)

∂sim
6= ∂αTim(sim)

∂sim
.

For an induction motor, a stable operating point must satisfy
∂Tie(sim,α)

∂sim
> ∂αTim(sim)

∂sim
. So the low-slip stable operating

points satisfy ∂g
∂sim

6= 0 in α ∈ [0, 1], and thus the HE solution
starting from sim = 0 converges to the low-slip solution.
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